Animals : an open access journal from MDPI | VOL. 12

Multiobject Tracking of Wildlife in Videos Using Few-Shot Learning.

Publication Date May 9, 2022


Camera trapping and video recording are now ubiquitous in the study of animal ecology. These technologies hold great potential for wildlife tracking, but are limited by current learning approaches, and are hampered by dependence on large samples. Most species of wildlife are rarely captured by camera traps, and thus only a few shot samples are available for processing and subsequent identification. These drawbacks can be overcome in multiobject tracking by combining wildlife detection and tracking with few-shot learning. This work proposes a multiobject-tracking approach based on a tracking-by-detection paradigm for wildlife to improve detection and tracking performance. We used few-shot object detection to localize objects using a camera trap and direct video recordings that could augment the synthetically generated parts of separate images with spatial constraints. In addition, we introduced a trajectory reconstruction module for better association. It could alleviate a few-shot object detector's missed and false detections; in addition, it could optimize the target identification between consecutive frames. Our approach produced a fully automated pipeline for detecting and tracking wildlife from video records. The experimental results aligned with theoretical anticipation according to various evaluation metrics, and revealed the future potential of camera traps to address wildlife detection and tracking in behavior and conservation.


Camera Traps Wildlife Tracking Few-Shot Learning Study Of Animal Ecology Multiobject Tracking Few-shot Object Wildlife Detection Video Recording Species Of Wildlife Shot Samples

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 12, 2022 to Sep 18, 2022

R DiscoverySep 19, 2022
R DiscoveryArticles Included:  5

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.