Abstract
Android has a large number of users that are accumulating with each passing day. Security of the Android ecosystem is a major concern for these users with the provision of quality services. In this paper, multimodal analysis of malware apps has been presented. We exploit static, dynamic, and visual features of apps to predict the malicious apps using information fusion. The proposed study applies case-based reasoning; for catalyzing the process of training and validation over renowned datasets with enriched feature-set. Our proposed semi-supervised technique uses benign and malicious apps to predict and classify malware. The prediction process uses a hybrid analysis of malware. The proposed approach, due to the efficient and adaptive nature of CBR, outperforms prevalent approaches. Our approach has an accuracy of 95% and reduced rate of false negative rate and a better precision metric, which beat the state-of-the-art techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.