Abstract
Lance-Adams syndrome (LAS), or chronic posthypoxic myoclonus, is a long-term disabling neurologic disorder occurring in survivors of anoxia. The cortical or subcortical origin of this myoclonus is unclear. We aimed to identify the neuroanatomical origin of myoclonus in LAS. We conducted a cross-sectional study and investigated patients diagnosed with LAS from the Department of Neurology of Pitié-Salpêtrière Hospital, using multimodal neurologic explorations: EEG with quantitative analyses, polygraphic EMG recording of myoclonus, coupled EEG-EMG analyses with jerk-locked back averaging, and 18fluorodeoxyglucose PET/CT imaging. All 18 patients had action multifocal or generalized myoclonus. Eleven patients also presented seizures, mainly generalized tonic-clonic seizures. For 8 patients, myoclonus decreased after seizures for a variable duration, from 1 day to 2 weeks. Epileptiform discharges were identified over the central median region (n = 14), with a maximal amplitude on the Cz (65 ± 20 µV, n = 12) and Fz (107 µV, n = 1) electrodes, and a significantly increased frequency during non-rapid eye movement sleep stages 1 (12 ± 8.5 events/minute, p = 0.004, n = 9) and 2 (11 ± 8.8 events/minute, p = 0.016, n = 7) compared with wake (5.5 ± 5.4 events/minute). The duration of the cortical and muscular events was significantly and positively correlated (ρ = 0.58, p < 0.001, n = 9). Action myoclonic jerks with a duration of <50 ms were confirmed in all patients, with a fast-descending corticospinal way organization with a mean biceps brachii-first interossei dorsalis delay of 9.8 ± 1 ms (n = 8). A central cortical transient preceding the muscular jerks was identified (n = 14), with a mean latency of -31.9 ± 2.9 ms for the tibialis anterior muscle (n = 7). A regional metabolism decrease was observed in the precentral cortex, supplementary motor area, paracentral lobule (n = 6), and postcentral cortex and precuneus (n = 5). This metabolism decrease was bilateral in the precentral cortex for 83% of the patients and in the postcentral cortex for 100%. Hypometabolism in the precentral, supplementary motor, and postcentral areas was confirmed with a voxelwise analysis (p < 10-3, n = 6). Our findings, based on a large cohort of patients with LAS, strongly suggest a cortical myoclonus, originating within the motor cortex and related to epileptiform mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.