Abstract
As biobanks become increasingly popular, access to genotypic and phenotypic data continues to increase in the form of precomputed summary statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related to biobank data, including that of data privacy and confidentiality, as well as high computational costs. However, questions remain about how to maximally leverage PCSS for downstream statistical analyses. Here we present a novel method for testing the association of an arbitrary number of single nucleotide variants (SNVs) on a linear combination of phenotypes after adjusting for covariates for common multimarker tests (e.g., SKAT, SKAT-O) without access to individual patient-level data (IPD). We validate exact formulas for each method, and demonstrate their accuracy through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.