Abstract
BackgroundTrypanosoma cruzi is a protozoan parasite characterized by extensive genetic heterogeneity. There are currently six recognised, genetically distinct, monophyletic clades designated discrete typing units (DTUs). TcI has the broadest geographical range and most genetic diversity evidenced by a wide range of genetic markers applied to isolates spanning a vast geographical range across Latin America. However, little is known of the diversity of TcI that exists within sylvatic mammals across the geographical expanse of Brazil.ResultsTwenty-nine sylvatic TcI isolates spanning multiple ecologically diverse biomes across Brazil were analyzed by the application of multilocus sequence typing (MLST) using four nuclear housekeeping genes. Results revealed extensive genetic diversity and also incongruence among individual gene trees. There was no association of intralineage genotype with geography or with any particular biome, with the exception of isolates from Caatinga that formed a single cluster. However, haplotypic analyses of METIII and LYT1 constitutive markers provided evidence of recombination events in two isolates derived from Didelphis marsupialis and D. albiventris, respectively. For diversity studies all possible combinations of markers were assessed with the objective of selecting the combination of gene targets that are most resolutive using the minimum number of genes. A panel of just three gene fragments (DHFR-TS, LYT1 and METIII) discriminated 26 out of 35 genotypes.ConclusionsThese findings showed geographical association of genotypes clustering in Caatinga but more characteristically TcI genotypes widely distributed without specific association to geographical areas or biomes. Importantly, we detected the signature of recombination events at the nuclear level evidenced by haplotypic analysis and incongruence.
Highlights
Trypanosoma cruzi is a protozoan parasite characterized by extensive genetic heterogeneity
Single locus phylogenies and multilocus sequence typing (MLST) Phylogenetic trees were generated for each marker (Additional file 1: Figure S1 and Additional file 2: Figure S2) to assess diversity and incongruence in topology
We conducted a MLST study using four nuclear genes applied to a panel of Trypanosoma cruzi I (TcI) isolates obtained from three didelphid hosts and spanning four ecologically disparate Brazilian biomes
Summary
Trypanosoma cruzi is a protozoan parasite characterized by extensive genetic heterogeneity. Little is known of the diversity of TcI that exists within sylvatic mammals across the geographical expanse of Brazil. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, is a vector-borne zoonosis transmitted by hematophagous triatomine bugs (Hemiptera: Reduviidae: Triatominae). They are maintained in the sylvatic environment by a wide range of mammalian hosts species and endemic from southern USA to southern Argentina [1, 2]. Infection occurs when parasites enter mammal hosts through skin lesions, the insect bite wound or directly through the mucosa. In Venezuela, an outbreak of over 100 cases of acute Chagas disease was caused by the ingestion of fresh guava juice in one
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.