Abstract

Multilevel thresholding image segmentation has received considerable attention in several image processing applications. However, the process of determining the optimal threshold values (as the preprocessing step) is time-consuming when traditional methods are used. Although these limitations can be addressed by applying metaheuristic methods, such approaches may be idle with a local solution. This study proposed an alternative multilevel thresholding image segmentation method called VPLWOA, which is an improved version of the volleyball premier league (VPL) algorithm using the whale optimization algorithm (WOA). In VPLWOA, the WOA is used as a local search system to improve the learning phase of the VPL algorithm. A set of experimental series is performed using two different image datasets to assess the performance of the VPLWOA in determining the values that may be optimal threshold, and the performance of this algorithm is compared with other approaches. Experimental results show that the proposed VPLWOA outperforms the other approaches in terms of several performance measures, such as signal-to-noise ratio and structural similarity index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.