Abstract

This study considers a multilevel assembly system with several components in each sublevel. It is assumed that actual lead time for all components is probabilistic; and periodic order quantity (POQ) policy for ordering is utilized. If at a certain level a job is not received at the expected time, a delay is incurred at the delivery of production at this level and this may result in backorders of the finished product. It is assumed in this case that a fixed percentage of the shortage is backlogged and other sales are lost. In the real situation, some but not all customers will wait for backlogged components during a period of shortage, such as for fashionable commodities or high-tech products with the short product life cycle. The objective of this study is to find the planned lead time and periodicity for the total components in order to minimize the expected fixed ordering, holding, and partial backlogging costs for the finished product. In this study, it is assumed that a percentage of components at each level are scrap. A general mathematical model is suggested and the method developed can be used for optimization planned lead time and periodicity for such an MRP system under lead time uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.