Abstract
Efficient multilevel preconditioners are developed and analyzed for the quadrature finite element Galerkin approximation of the biharmonic Dirichlet problem. The quadrature scheme is formulated using the Bogner–Fox–Schmit rectangular element and the product two-point Gaussian quadrature. The proposed additive and multiplicative preconditioners are uniformly spectrally equivalent to the operator of the quadrature scheme. The preconditioners are implemented by optimal algorithms, and they are used to accelerate convergence of the preconditioned conjugate gradient method. Numerical results are presented demonstrating efficiency of the preconditioners. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.