Abstract
The performance of the modified-filter synthetic-discriminant-function (MfSDF) filter with multilevel phase and amplitude (MLAP) constraints is investigated with various in-plane rotated images from an in-class Bradley armored personnel carrier vehicle and an out-of-class Abram MI tank; this is of interest because of the commercial availability of liquid-crystal televisions, which are able to encode the gray-level amplitude and/or the discrete multilevel phase information. The evaluation is performed to explain better the image-distortion range that can be covered effectively by MLAP/MfSDF filters. The results show that the MLAP/MfSDF filter offers much-improved correlator system performance with a greater allowable image-distortion range while maintaining 100% discrimination between in-class and out-ofclass images; furthermore, it shows an improved ability to accommodate the input image noise when compared with the MfSDF filter with a binary phase-only constraint. Thus the MLAP/MfSDF can be implemented effectively by a hybrid optical/digital correlator system to track a vehicle or a tank dynamically as it moves along a random trajectory across the input field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.