Abstract

Depth cues with affluent spatial information have been proven beneficial in boosting salient object detection (SOD), while the depth quality directly affects the subsequent SOD performance. However, it is inevitable to obtain some low-quality depth cues due to thelimitations of its acquisition devices, which can inhibit the SOD performance. Besides, existing methods tend to combine RGB images and depth cues in a direct fusion or a simple fusion module, making them not effectively exploit the complex correlations between the two sources. Moreover, few methods design an appropriate module to fully fuse multi-level features, resulting in cross-level feature interaction insufficient. To address these issues, we propose a novel Multi-level Cross-modal Interaction Network (MCI-Net) for RGB-D based SOD. Our MCI-Net includes two key components: 1) a cross-modal feature learning network, which is used to learn the high-level features for the RGB images and depth cues, effectively enabling the correlations between the two sources to be exploited; and 2) a multi-level interactive integration network, which integrates multi-level cross-modal features to boost the SOD performance. Extensive experiments on six benchmark datasets demonstrate the superiority of our MCI-Net over 14 state-of-the-art methods, and validate the effectiveness of different components in our MCI-Net. More important, our MCI-Net significantly improves the SOD performance as well as has a higher FPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.