Abstract

AbstractA multilevel modeling framework for the failure analyses of structures made of steel-fiber–reinforced concrete (SFRC), which allows researchers to follow the effects of design parameters such as fiber type, distribution, and orientation from the scale of fiber–matrix interaction to the structural behavior, is proposed. The basic ingredient at the level of single fibers is an analytical model for the prediction of the pullout response of straight or hooked-end fibers. For an opening crack in a specific SFRC composite, the fiber bridging effect is computed via the integration of the pullout response of all fibers intercepting the crack, taking anisotropic fiber orientations into consideration. For the finite-element analysis of the failure behavior of SFRC structures, interface solid elements are used to represent cracks. The softening behavior of opening cracks is governed by cohesive tractions and the fiber bridging effect. The use of an implicit/explicit integration scheme enhances the computatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.