Abstract

Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area.

Highlights

  • Surface modification techniques have become a key method in the design of materials with specific biological and chemical interactions, creating and optimizing the substrate by alteration of surface functionality or by thin film deposition [1]

  • The consecutive self-assembly of nanometre-sized layers of multiply charged macromolecules or other objects onto surfaces has been the base of the so-called Layer-by-Layer (LbL) technology, a very interesting technique that permits a highly inexpensive and readily accessible surface modification [2,3,4]

  • During multi-layers formation, a charged substrate is exposed to solutions containing positive or negative polyelectrolytes, so each adsorption leads to the charge inversion of the surface, and multi-layers are stabilised by strong electrostatic forces

Read more

Summary

Introduction

Surface modification techniques have become a key method in the design of materials with specific biological and chemical interactions, creating and optimizing the substrate by alteration of surface functionality or by thin film deposition [1]. LbL deposition has been reported as an easy technique, functional on a wide range of surfaces [3, 5]. This method uses the electrostatic attraction between opposite charges as the driving force for the multi-layer build-up [6,7,8]. Zhu et al [9] explored the build-up of multi-layers of polyethyleneimine/

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.