Abstract

An immunosensor for determination of salbutamol was developed. It based on glass carbon electrode (GCE) modified with a conductive multilayer film comprised of multi-wall carbon nanotubes, polythionine and gold nanoparticles. Salbutamol antibody was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin (BSA). The stepwise self-assembly process of the immunosensor was studied by cyclic voltammetry. The detection scheme is based on competitive binding of salbutamol to the sensor surface whose differential pulse voltammetric signal decreases after competitive binding of the salbutamol-BSA conjugate and free salbutamol to the salbutamol antibody. The sensor responds to salbutamol in 5 to 150 nM concentration range, with a detection limit of 1 nM. This method was applied to the precise and sensitive determination of salbutamol in spiked feed samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.