Abstract

The study of co-expression programs in the context of cancer can help to elucidate the genetic mechanisms that are altered and lead to the disease. The identification of gene co-expression patterns, unique to healthy profiles (and absent in cancer) is an important step in this direction. Networks are a good tool for achieving this as they allow to model local and global structural properties of the gene co-expression program. This is the case of gene co-expression networks (GCNs), where nodes or vertices represent genes and an edge between two nodes exists if the corresponding genes are co-expressed. Single threshold co-expression networks are often used for this purpose. However, important interactions in a broader co-expression space needed to unravel such mechanisms may be overlooked. In this work, we use a multilayer network approach that allows us to study co-expression as a discrete object, starting at weak levels of co-expression building itself upward towards the top co-expressing gene pairs.We use a multilayer GCNs (or simply GCNs), to compare healthy and breast cancer co-expression programs. By using the layers of the gene co-expression networks, we were able to identify a structural mechanism unique in the healthy GCN similar to well-known preferential attachment. We argue that this mechanism may be a reflection of an organizational principle that remains absent in the breast cancer co-expression program. By focusing on two well-defined set of nodes in the top co-expression layers of the GCNs—namely hubs and nodes in the main core of the network—we found a set of genes that is well conserved across the co-expression program. Specifically, we show that nodes with high inter-connectedness as opposed to high connectedness are conserved in the healthy GCN. This set of genes, we discuss, may partake in several different functional pathways in the regulatory program. Finally, we found that breast cancer GCN is composed of two different structural mechanisms, one that is random and is composed by most of the co-expression layers, and another non-random mechanism found only in the top co-expression layers.Overall, we are able to construct within this approach a portrait of the whole transcriptome co-expression program, thus providing a novel manner to study this complex biological phenomenon.

Highlights

  • Identifying the mechanisms underlying gene regulation is paramount to understand the system-wide development and functioning of the cell

  • One remarkable topological difference found between healthy and breast cancer gene co-expression network (GCN) lies in terms of inter/intra-chromosomal connectivity (Espinal-Enriquez et al 2017; García-Cortés et al 2020; de Anda-Jáuregui et al 2019; de Anda-Jáuregui et al 2019)

  • Inter-chromosomal connectivity can be measured using the attribute assortativity coefficient (AAC), where a value of 1 is found in networks never connecting nodes in two different chromosomes, -1 in networks when only nodes in different chromosomes are connected, and 0 when the mixing is random

Read more

Summary

Introduction

Identifying the mechanisms underlying gene regulation is paramount to understand the system-wide development and functioning of the cell. In cancer, it can unravel the regulatory causes of cell malfunction (Hernández-Lemus et al 2019). For a given tissue and the genetic profiles of several samples we can calculate the co-expression values of each pair of genes using a measure of statistical dependence (Margolin et al 2006a; Hernández-Lemus et al 2009; Marbach et al 2012). It follows that highly co-expressed genes are likely related to a biological activity, while the rest of co-expressing values could represent systemic noise lacking any biological interpretation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.