Abstract

Contact phenomena between deformable bodies are a common problem in engineering. The surface stress distribution and subsurface stresses depend on many parameters. In view of increasingly strict tolerances the effects of local variations in material properties need to be accurately predicted. In this paper a multigrid solution method is presented for contact problems between three dimensional elastic heterogeneous materials. The contact problem is incorporated as boundary condition in the multigrid solution of the displacement equations for the volume. First, validation results are presented. Subsequently a study is presented for soft and hard clusters of inclusions. Finally, results are presented for a contact problem involving a realistic case of a polycrystalline material representative for applications with ceramic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.