Abstract

A large acclimation experiment was performed with Daphnia magna in which two different copper bioavailability (as Cu 2+) groups (N and M) were used. In the N group the cupric ion activity increased with increasing dissolved copper-acclimation concentration, while in the M group the ion activity decreased with increasing dissolved copper concentration. The activity of copper carbonates and hydroxides was up to an order of magnitude lower than the cupric ion activity. After five generations of acclimation, the acute copper sensitivity (mean±SD) of the N group ranged from 193±24 to 296±50 μg Cu L −1 and for the M group from 198±27 to 315±38 μg Cu L −1 for daphnids acclimated to 1 and 100 μg Cu L −1, respectively. The internal copper concentration of the acclimated daphnids also resulted in similar results between the two groups. Acclimation of the two daphnid groups for five consecutive generations to the three dissolved copper concentrations resulted in a shift in the optimal concentration range toward 1 μg Cu L −1, using energy reserves as an endpoint. Our results suggest that copper acclimation and accumulation are related to the dissolved copper concentration of the culture medium, but not to the copper activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.