Abstract

A lack of dimensional stability of worsted fabrics when laundering leads to a rapid increase in wool textile waste. Dry cleaning is thus highly recommended; however, it requires solvent(s), which are not eco-friendly. The aim of this study was to produce a machine-washable, 100% worsted wool woven as an outer fabric for men’s suit jacket that is also water-repellent in order to reduce the number of washes required during use. Chemical treatments were applied through successive paddings, using a blend of aqueous dispersion of polyurethane and polysiloxane (PUPX) for shrink-proofing/dimensional stability, followed by a second blend of an aqueous emulsion of fluorotelomer methacrylate and paraffin/hydrocarbon waxes (C6PW) polymers for water-repellency. The dimensional change of the finished fabric did not exceed 2%, meeting Woolmark requirements AW-1. Zeta potential measurements confirm that the fabric coated with PUPX has an overall anionic nature, which allows the good adhesion of the successive cationic C6PW polymer blend used in the second padding. Additionally, Scanning Electron Microscopy (SEM) analysis confirmed the good adhesion of the first blend (PUPX) to the wool fiber surface and inter-fiber bonding. After the application of (C6PW) resin, the fabric exhibited durable water repellency with a 5/5 spray test rating after 10 washes and dimensional stability, as well as high resistance to wear and abrasion, while retaining a soft feel and good flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.