Abstract

Highly biocompatible sub-50-nm monodisperse superparamagnetic Fe3O4@SiO2 core/shell nanoparticles with luminescent silica shells were synthesized by a w/o-microemulsion technique. And then these nanoparticles were coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG) and modified with the biological cancer targeting ligand folic acid (FA). After characterized by means of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), UV-vis, fluorescence spectroscopy and confocal laser scanning microscopy (CLSM), we confirmed that Fe3O4@SiO2 (FITC)-PEG-FA nanocomposites (SMNPs-FA) could be efficiently taken up by HeLa cancer cells and KB cells which are of over-expression of folate receptors. The multifunctional nanomaterials exhibited superparamagnetic, monodisperse, highly biocompatible, intensively fluorescent and capable of recognizing and binding cells that overexpress folate receptors, which would be useful for targeting cell imaging and provide an excellent platform for further development of an efficient cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.