Abstract
Highly active gC3N4-BiFeO3-Cu2O nanocomposites were successfully prepared via a facile, cost effective and eco-friendly method of hydrothermally wet precipitation combined with ultrasonic dispersion process. The prepared samples were characterized by XRD, FTIR, HRSEM, EDS, TEM, UV–Vis DRS, PL, VSM, BET and electrochemical properties. By means of these analysis for examine the crystal phase, nanostructure, band gap and light-harvesting properties were carried out. UV-DRS spectra indicate that the bandgap of g-C3N4 (2.7 eV) reduced to 2.59 and 2.21 eV by mixed with corresponds to BiFeO3 and BiFeO3/Cu2O nanomaterials. The ideal photocatalytic activity of the gC3N4-BiFeO3-Cu2O nanocomposites, where RhB dye under visible light irradiation which was up to 4.36 and 2.52 times as the higher photodegradation ability to compare pristine g-C3N4 and gC3N4-BiFeO3 catalyst. The magnetization was confirmed by VSM studies, and hence, after the photocatalytic reaction, the magnetically separable catalyst can be quickly separated from the water by an external magnetic field. The superior photocatalytic performance is due to the synergistic effect on the interface of BiFeO3/Cu2O in the gC3N4-BiFeO3-Cu2O nanocomposites has reduced the bandgap which enables high separation efficiency of the charge carrier, suppressed recombination rate and their high surface area. Moreover, the chief gC3N4-BiFeO3-Cu2O catalyst can exhibited the lesser charge transfer resistance (impedance), enhances of photocurrent responses, whereas exposed to the development of photocatalytic appearance and more charge carrier ability. Also, the antibacterial activity of the gC3N4-BiFeO3-Cu2O nanocomposite has showing a well deactivation in both G+ (S. aureus) and G− (E. coli) bacteria’s whereas compare to other prepared samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.