Abstract
We present a hybrid device based on graphene-coupled silicon (Si) photonic crystal (PhC) cavities, featuring triple light detection, modulation, and switching. Through depositing single-layer graphene onto the PhC cavity, the light-graphene interaction can be enhanced greatly, which enables significant detection and modulation of the resonant wavelength. The device is designed to generate a photocurrent directly by the photovoltaic effect and has an external responsivity of ∼14 mA/W at 1530.8 nm (on resonance), which is about 10 times higher than that off-resonance. Based on the thermo-optical effect of silicon and graphene, the device is also demonstrated in electro-optical and all-optical modulation. Also, due to the high-quality (Q) factor of the resonate cavity, the device can implement low threshold optical bistable switching, and it promises a fast response speed, with a rise (fall) time of ∼0.4 μs (∼0.5 μs) in the all-optical switch and a rise (fall) time of ∼0.5 μs (∼0.5 μs) in the electro-optical hybrid switch. The multifunctional photodetector, modulator, and optical bistable switch are achieved in a single device, which greatly reduces the photonic overhead and provides potential applications for future integrated optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.