Abstract

ELISA has become the gold standard for detecting harmful substances due to its specific antibody recognition and sensitive enzyme-catalyzed reactions. In this study, multifunctional magnetic Prussian blue nanolabels (MPBNs) were synthesized using a simple gentle two-step method to achieve a dual-readout mode. The MPBNs provide a sensitive colorimetric signal by efficiently catalyzing the oxidation of TMB and exhibit prominent photocatalytic degradation activity towards Rhodamine B (RhB). Supplemented by the quenching effect of oxTMB, the fluorescence was enabled to serve as a sensitive second signal. The magnetic property of the labels facilitates the separation and enrichment of the target, thereby improving sensitivity. Utilizing the versatile MPBNs, the visual limit of detection (vLOD) for Staphylococcus aureus is as low as 100 CFU/mL, with a quantitative analysis range of 102–108 CFU/mL. The introduction of photocatalytic reactions into immunoassay has opened up a new signal response system with strong momentum for development and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.