Abstract

The synthesis of two versatile fluorescent metal-organic frameworks (MOFs), [Eu(4-NCP)(1,4-bdc)]n·0.5H2O (1) and [Eu(4-NCP)(4,4'-bpdc)]n·0.75H2O (2) (HNCP = 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline, 1,4-H2bdc = benzene-1,4-dicarboxylic acid, 4,4'-H2bpdc = 4,4'-biphenyldicarboxylic acid), was carried out using a hydrothermal method. These MOFs were characterized through various advanced technologies to determine their structural information. The results indicate that both MOFs exhibited 3D network structures with specific topologies. Furthermore, these MOFs demonstrated exceptional thermal stabilities and adsorption capabilities. Additionally, complex 2 was utilized for studying the fluorescence sensing properties of various micronutrients including metal ions, nitro aromatic compounds, and biological small molecules. Notably, complex 2 showed promising potential as a multifunctional sensor for selectively detecting Fe3+, nitrobenzene, and ascorbic acid in aqueous solutions through fluorescence quenching with low limits of detection (LODs ∼ 10-7 M) and high quenching constants (Ksv ∼ 103 M-1). Moreover, the detection mechanism of complex 2 was further investigated by using experimental methods and DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.