Abstract

Effective targeting drug delivery for cancer therapy still remains a formidable challenge due to the complication and heterogeneity of malignant tumors. Herein, a multifunctional targeting strategy was proposed, in which a novel pH-sensitive polymethacrylates (PMA)-grafted poly(amidoamine) (PAMAM) nano delivery system was designed to be responsive to the acidic tumor microenvironment, and thereby trigger drug release in the intra-tumoral space. In addition, folate-PEGylation was applied to modify the surface of PMA-PAMAM nanoparticles in order to enhance tumor selectivity via both active and passive targeting mechanisms: folate receptor targeting, long circulation and EPR effect. The utility and efficacy of such system was demonstrated both in vitro and in vivo. Tumor drug accumulation was significantly enhanced by folate-PEGylated PMA-PAMAM nanoparticles, and such observation corresponded to their strong inhibition of tumor growth in tumor-bearing mice, demonstrating the success of the multifunctional targeting delivery. This multifunctional targeting strategy provides a promising solution to improve targeting drug delivery for combating the complex cancer diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.