Abstract

The development of novel flame retardants for cotton textiles that form a stable layer on textile fiber is of high economical and practical relevance. A novel flame retardant fluorinated phosphoric acid esters modified silicone resins for cotton modification were synthesized. The investigated phosphoric acid esters based compounds were substituted by a fluorinated chain or ring, and alkoxysilyl groups. The presence of alkoxysilyl groups allowed the formation of bonds with cellulose, while derivatives of phosphoric esters reduced the flammability of fabrics. Additionally, the presence of fluoride in their structures affected the hydrophobic properties. Cotton fabrics were modified in a simple one-step process by dip-coating method. The flame retardant properties of modified textiles were examined by performing microcalorimetric analysis, thermogravimetry analysis, and measuring oxygen index. The hydrophobicity was evaluated by measuring the water contact angle. The modified fabrics were characterized by SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) analysis and surface morphology. As a result of the tests, multifunctional fabrics were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.