Abstract
Scanning probe instruments have expanded beyond their traditional role as imaging or "reading" tools and are now routinely used for "writing." Although a variety of scanning probe lithography techniques are available, each one imposes different requirements on the types of probes that must be used. Additionally, throughput is a major concern for serial writing techniques, so for a scanning probe lithography technique to become widely applied, there needs to be a reasonable path toward a scalable architecture. Here, we use a multilayer graphene coating method to create multifunctional massively parallel probe arrays that have wear-resistant tips of uncompromised sharpness and high electrical and thermal conductivities. The optical transparency and mechanical flexibility of graphene allow this procedure to be used for coating exceptionally large, cantilever-free arrays that can pattern with electrochemical desorption and thermal, in addition to conventional, dip-pen nanolithography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.