Abstract
Antireflective and self-cleaning coatings have attracted increasing attention in the last few years due to their promising and wider applications such as stealth, display devices, sensing, and other fields. However, existing antireflective and self-cleaning functional material are facing problems such as difficult performance optimization, poor mechanical stability, and poor environmental adaptability. Limitations in design strategies have severely restricted coatings' further development and application. Fabrication of high-performance antireflection and self-cleaning coatings with satisfactory mechanical stability remain a key challenge. Inspired by the self-cleaning performance of nano-/micro-composite structure on natural lotus leaves, SiO2/PDMS/matte polyurethane biomimetic composite coating (BCC) was prepared by nano-polymerization spraying technology. The BCC reduced the average reflectivity of the aluminum alloy substrate surface from 60% to 10%, and the water contact angle (CA) was 156.32 ± 0.58°, illustrating the antireflective and self-cleaning performance of the surface was significantly improved. At the same time, the coating was able to withstand 44 abrasion tests, 230 tape stripping tests, and 210 scraping tests. After the test, the coating still showed satisfactory antireflective and self-cleaning properties, indicating its remarkable mechanical stability. In addition, the coating also displayed excellent acid resistance, which has important value in aerospace, optoelectronics, industrial anti-corrosion, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.