Abstract
Foundation species provide critical resources to ecological community members and are major determinants of biodiversity. The barnacle Balanus glandula is one such species and dominates space among the higher reaches on wave-swept shores. Here, we show that B. glandula produces a 199.6-kDa glycoprotein (named "MULTIFUNCin"), and following secretion, a 390-kDa homodimer in its native state. MULTIFUNCin expression is localized in the epidermis, cuticle, and new shell material. Consequently, this molecule can specify upon contact the immediate presence of a live barnacle. Shared, conserved domains place MULTIFUNCin in the α2-macroglobulin (A2M) subgroup of the thioester-containing protein family. Although previously undescribed, MULTIFUNCin shares 78% nucleotide sequence homology with a settlement-inducing pheromone (SIP) of the barnacle, Amphibalanus amphitrite Based on this and further evidence, we propose that the two proteins are orthologues and evolved ancestrally in structural and immunological roles. More recently, they became exploited as chemical cues for con- and heterospecific organisms, alike. MULTIFUNCin and SIP both induce habitat selection (settlement) by conspecific barnacle larvae. In addition, MULTIFUNCin acts as a potent feeding stimulant to major barnacle predators (sea stars and several whelk species). Promoting immigration via settlement on the one hand, and death via predation on the other, MULTIFUNCin simultaneously mediates opposing demographic processes toward structuring both predator and prey populations. As a multifunctional protein cue, MULTIFUNCin provides valuable sensory information, conveys different messages to different species, and drives complex biotic interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.