Abstract

Shale gas is considered a crucial global energy source. Hydraulic fracturing with multiple fractures in horizontal wells has been a crucial method for stimulating shale gas. During multi-stage fracturing, the fracture propagation is non-uniform, and fractures cannot be induced in some clusters due to the influence of stress shadow. To improve the multi-fracture propagation performance, technologies such as limited-entry fracturing are employed. However, perforation erosion limits the effect of the application of these technologies. In this paper, a two-dimensional numerical model that considers perforation erosion is established based on the finite element method. Then, the multi-fracture propagation, taking into account the impact of perforation erosion, is studied under different parameters. The results suggest that perforation erosion leads to a reduction in the perforation friction and exacerbates the uneven propagation of the fractures. The effects of erosion on multi-fracture propagation are heightened with a small perforation diameter and perforation number. However, reducing the perforation number and perforation diameter remains an effective method for promoting uniform fracture propagation. As the cluster spacing is increased, the effects of erosion on multi-fracture propagation are aggravated because of the weakened stress shadow effect. Furthermore, for a given volume of fracturing fluid, although a higher injection rate is associated with a shorter injection time, the effects of erosion on the multi-fracture propagation are more severe at a high injection rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.