Abstract

Polydimethyl silicone rubber-based polymer composites filled with molybdenum and bismuth were fabricated using simple open mold cast technique. The physical and chemical structure and gamma shielding parameters like attenuation coefficient, half-value layer (HVL) thickness and relaxation length have been investigated for the said novel materials using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR) and gamma ray spectrometer. XRD study reveals the crystalline nature of the composites. It is evident from FTIR studies that there is no chemical interaction between the polymer matrix and filler particles. The results of attenuation studies reveal that the linear attenuation coefficient increases with addition of Bi and Mo and is found to be 0.653, 1.341 and 1.017, 1.793 and 0.102, 0.152cm-1 for 1MMB and 2MMB polymer composites at 80, 356 and 662keV gamma rays, respectively. The HVL thickness of the materials is found to be 1.06, 0.51 and 0.68, 0.38 and 6.73, 4.532cm for 1MMB (20Mo+10Bi phr) and 2MMB (40Mo+20Bi phr) at these energies, respectively. The mass attenuation coefficient of the novel composites 1MMB and 2MMB is found to be higher than the conventional materials like lead and barite for 356keV gamma rays. In addition, the material is found to be light weight and flexible enabling to be molded in required forms, thus being a substitute for the material lead that is known to be heavy and toxic by nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.