Abstract

A multi-fidelity model for beam vibration is developed by coupling a low-fidelity Euler-Bernoulli beam finite element model with a high-fidelity Timoshenko beam finite element model. Natural frequencies are used as the response measure of the physical system. A second order response surface is created for the low-fidelity Euler-Bernoulli model using the face centered design. Correction response surfaces for multi-fidelity analysis are created by utilizing the high-fidelity finite element predictions and the low-fidelity finite element predictions. It is shown that the multi-fidelity model gives accurate results with high computational efficiency when compared to the high-fidelity finite element model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.