Abstract

We present a fully transparent, scalable, and flexible color image sensor that consists of stacked thin-film luminescent concentrators (LCs). At each layer, it measures a Radon transform of the corresponding LC's spectral responses. Color images are then reconstructed through inverse Radon transforms that are obtained using machine learning. A high sampling rate in Radon space allows encoding multiple exposures to cope with under- and overexposed cases in one recording. Thus, our sensor simultaneously measures multiple spectral responses in different LC layers and multiple exposures in different Radon coefficients per layer. We also show that machine learning enables adequate three-channel image reconstruction from the response of only two LC layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.