Abstract
The cooperative effects of main-group elements pave the way for novel chemical transformations. However, the potential of bimetallic complexes featuring the most abundant aluminum and silicon elements remains largely unexplored. In this study, we present the synthesis and characterization of bis(silylene)-stabilized aluminylene 2. The cooperation between aluminylene and silylene allows for the facile cleavage of the N-O bond in nitrosoarenes, producing an aluminum imide complex 4 and tetracyclic oxazasilaalanes 5 and 6, and also promotes the dearomatization of 2-methylquinoline, yielding a silylalane 7. In addition, 2 is an effective precatalyst for the reductive coupling of nitrosoarenes to azoxyarenes. These results outline an approach for orchestrating aluminum and silicon cooperation to facilitate chemical bond activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.