Abstract
Domain-invariant (view-invariant & modalityinvariant) feature representation is essential for human action recognition. Moreover, given a discriminative visual representation, it is critical to discover the latent correlations among multiple actions in order to facilitate action modeling. To address these problems, we propose a multi-domain & multi-task learning (MDMTL) method to (1) extract domain-invariant information for multi-view and multi-modal action representation and (2) explore the relatedness among multiple action categories. Specifically, we present a sparse transfer learning-based method to co-embed multi-domain (multi-view & multi-modality) data into a single common space for discriminative feature learning. Additionally, visual feature learning is incorporated into the multitask learning framework, with the Frobenius-norm regularization term and the sparse constraint term, for joint task modeling and task relatedness-induced feature learning. To the best of our knowledge, MDMTL is the first supervised framework to jointly realize domain-invariant feature learning and task modeling for multi-domain action recognition. Experiments conducted on the INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset, the MSR Daily Activity 3D (DailyActivity3D) dataset, and the Multi-modal & Multi-view & Interactive (M2I) dataset, which is the most recent and largest multi-view and multi-model action recognition dataset, demonstrate the superiority of MDMTL over the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.