Abstract

Experimental methods based on a wide range of physical principles are used to determine carrier mobilities for light-harvesting materials in photovoltaic cells. For example, in a time-of-flight experiment, a single laser pulse photoexcites the active layer of a device, and the transit time is determined by the arrival of carriers at an acceptor electrode. With inspiration from this conventional approach, we present a multidimensional time-of-flight technique in which carrier transport is tracked with a second intervening laser pulse. Transient populations of separate material components of an active layer may then be established by tuning the wavelengths of the laser pulses into their respective electronic resonances. This experimental technique is demonstrated using photovoltaic cells based on mixtures of organohalide perovskite quantum wells. In these "layered perovskite" systems, charge carriers are funneled between quantum wells with different thicknesses because of staggered band alignments. Multidimensional time-of-flight measurements show that these funneling processes do not support long-range transport because of carrier trapping. Rather, our data suggest that the photocurrent is dominated by processes in which the phases of the thickest quantum wells absorb light and transport carriers without transitions into domains occupied by quantum wells with smaller sizes. These same conclusions cannot be drawn using conventional one-dimensional techniques for measuring carrier mobilities. Advantages and disadvantages of multidimensional time-of-flight experiments are discussed in the context of a model for the signal generation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.