Abstract

Abstract Investors, developers, policy makers and engineers are rightly concerned about the potential effects of climate change on the future performance of hydropower investments. Hydroelectricity offers potentially low greenhouse-gas emission, renewable energy and reliable energy storage. However, hydroelectricity developments are large, complicated projects and possibly critically vulnerable to changes in climate and other assumptions related to future uncertainties. This paper presents a general assessment approach for evaluating the resilience of hydroelectricity projects to uncertainty in climate and other risk factors (e.g., financial, natural hazard). The process uses a decision analytic framework based on a decision scaling approach, which combines scenario neutral analysis and vulnerability-specific probability assessment. The technical evaluation process involves identification of project objectives, specification of uncertain factors, multi-dimensional sensitivity analysis, and data mining to identify vulnerability-specific scenarios and vulnerability-specific estimations of risk. The process is demonstrated with an application to a proposed hydropower facility on the Arun River in Nepal. The findings of the case study illustrate an example in which climate change is not the critical future uncertainty, and consequently highlight the importance of considering multiple uncertainties in combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.