Abstract
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We overview the theory of classical MDS, along with its optimality properties and goodness of fit. Further, we present a notion of MDS on infinite metric measure spaces that generalizes these optimality properties. As a consequence we can study the MDS embeddings of the geodesic circle $S^1$ into $\mathbb{R}^m$ for all $m$, and ask questions about the MDS embeddings of the geodesic $n$-spheres $S^n$ into $\mathbb{R}^m$. Finally, we address questions on convergence of MDS. For instance, if a sequence of metric measure spaces converges to a fixed metric measure space $X$, then in what sense do the MDS embeddings of these spaces converge to the MDS embedding of $X$?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.