Abstract
Polyelectrolyte multilayers have been vastly utilized as an assembling platform for various biomaterials because of their soft and charged surface characteristics, analogous to biomembrane systems. In particular, polyelectrolyte chains with high self-diffusivity can effectively transfer the surface mobility to the assembling biomolecular species, facilitating the ordered self-assembly. Herein, highly diffusional cationic polyelectrolyte chains of linear polyethylenimine are employed to induce direct binding with negatively charged bacterial surface layer proteins, which eventually lead to large-scale two-dimensional crystals. Notably, at the elevated incubation temperature, a transitory intermediate of one-dimensional chain structure is observed. We reveal that this one-dimensional intermediate is a stable precursor toward two-dimensional crystal arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.