Abstract

Multicriteria optimization (MCO) is used to parametrize molecular models of water. The set of the best possible compromises between different objectives, the Pareto set, is determined. Calculating Pareto sets for optimization problems involving molecular simulations is computationally expensive. Therefore, we use a novel, highly efficient method, which is based on the fact that numerical results from molecular simulations can be interpreted as dimensionless numbers. Hence, they carry information on an entire class of models in physical units. This approach was applied here for the MCO of water models of the "one-center Lennard-Jones + point charge" type, in which the objectives were the quality of the description of the vapor pressure, liquid density, and enthalpy of vaporization. The results were compared to models from the literature. Significant improvements were observed. The new optimization method for the development of molecular models is efficient, robust, and broadly applicable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.