Abstract

AbstractThe article describes the procedure for multicriteria optimization and choosing the best parameter values of a manipulator designed to lift a heavy, bulky load using two parallel and synchronously operating hydraulic drives. Information about the dynamics of the system was obtained by computer simulation of a sufficiently complete dimensionless model. Three characteristics of the system are considered as optimality criteria: imbalance of mass loads on drives, power (size) of drives and synchronization of their operation. To search for feasible solutions to the optimization problem in the parameter space, a sequence of uniformly distributed points was generated. The sets of feasible and Pareto optimal solutions are analyzed using visualization tools in the MOVI program. Within the framework of the mathematical criteria importance theory, expert information on preferences regarding criteria was formalized and refined. In the course of this iterative procedure, the set of feasible solutions was narrowed down to 67, then to 4 alternatives, and in the end one best solution was chosen. KeywordsDynamic systemHydraulic driveDimensionless parametersVisualizationMulticriteria optimizationCriteria importance

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.