Abstract
Multi-component integrable generalizations of the Fokas–Lenells equation, associated with each irreducible Hermitian symmetric space are formulated. Description of the underlying structures associated to the integrability, such as the Lax representation and the bi-Hamiltonian formulation of the equations is provided. Two reductions are considered as well, one of which leads to a nonlocal integrable model. Examples with Hermitian symmetric spaces of all classical series of types A.III, BD.I, C.I and D.III are presented in details, as well as possibilities for further reductions in a general form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.