Abstract

Micropatterning of surfaces with several chemicals at different spatial locations usually requires multiple stamping and registration steps. Here, we describe an experimental method based on reaction-diffusion phenomena that allows for simultaneous micropatterning of a substrate with several coloured chemicals. In this method, called wet stamping (WETS), aqueous solutions of two or more inorganic salts are delivered onto a film of dry, ionically doped gelatin from an agarose stamp patterned in bas relief. Once in conformal contact, these salts diffuse into the gelatin, where they react to give deeply coloured precipitates. Separation of colours in the plane of the surface is the consequence of the differences in the diffusion coefficients, the solubility products, and the amounts of different salts delivered from the stamp, and is faithfully reproduced by a theoretical model based on a system of reaction-diffusion partial differential equations. The multicolour micropatterns are useful as non-binary optical elements, and could potentially form the basis of new applications in microseparations and in controlled delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.