Abstract
Quantum coherence and interference (Scully & Zubairy, 1997) are leading edge topics in quantum optics and laser physics, and have led to many important novel effects, such as coherent population trapping (CPT) (Arimondo & Orriols, 1976; Alzetta et al., 1976; Gray et al., 1978), lasing without inversion (LWI) (Harris, 1989; Scully et al., 1989; Padmabandu et al., 1996), electromagnetically induced transparency (EIT) (Boller et al., 1991; Harris, 1997; Ham et al., 1997; Phillips et al., 2003; Fleischhauer et al., 2005; Marangos, 1998), high refractive index without absorption (Scully, 1991; Scully & Zhu 1992; Harris et al., 1990), giant Kerr nonlinear effect (Schmidt & Imamoglu, 1996), and so on. In particular, EIT, which can dramatically modify the absorption and dispersion characteristics of an optical medium, plays an important role in quantum optics. In the last two decades, EIT has attracted great attention and has been successfully applied to ultraslow and stopping light (Kasapi et al., 1995; Hau et al., 1999; Kocharovskaya et al., 2001; Liu et al., 2001; Turukhin et al., 2002), quantum switching (Ham & Hemmer, 2000), quantum memory (Ham et al., 1997; ibid., 1998), quantum entanglement generation (Lukin & Imamoglu, 2000), and quantum computing (Lukin & Imamoglu, 2001). It is well established that light is the fastest information carrier in nature. However, controlling light for localized application is very difficult. Thus, manipulation of light velocity becomes a crucial task in optical and quantum information processing (Nielsen & Chuang, 2000). Recently light localization using EIT has been demonstrated for stationary light (Bajcsy et al., 2003). Stationary light gives novel effects to nonlinear quantum optics in the context of lengthening light-matter interaction time. Compared with ultraslow light, where the medium’s length is a limiting factor, stationary light is free from spatial constraint. For example, the interaction time using ultraslow light in a semiconductor quantum dot, whose spatial dimension is less than a few tens of nanometers, is much less than nanosecond. By using a stationary light technique, however, we can enormously increase the interaction time of the light with such a nano optical medium. In this chapter, we discuss stationary light based on the EIT-induced ultraslow light phenomenon. We theoretically investigate how to dynamically manipulate multicolor (MC) stationary light in the multi double lambda-type system by simply changing the parameters of control fields, and demonstrate ultralong trapping of light, which is different from the conventional quantum mapping phenomenon. Quantum coherent control of the stationary light has potential applications to various quantum optical processing such as quantum nondemolition measurement and quantum wavelength conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.