Abstract

BackgroundAvailability of multichannel cytometers and specific commercial antibodies makes flow cytometry a new option to simultaneously assess multiple intracellular platelet signaling pathways for clinical purposes, in small volume of blood or low platelet count. ObjectivesTo describe a multicolor flow cytometry with fluorescent barcoding technique for screening signaling pathways downstream membrane receptors of major platelet agonists (adenosine diphosphate, thrombin, thromboxane, and collagen). MethodsBy comparison with immunoblotting, we first selected the target phosphoproteins, AKT, P38MAPK, LIMK, and SPL76; the times of stimulation; and phosphoflow barcoding conditions. We then performed a clinical study on whole blood of patients without evidence of blood platelet disorder on standard biological screening, consulting for trivial or occasionally provoked bleeds without familial antecedent (bleeding of unknown origin, n = 23) or type-1 von Willebrand disease (n = 9). In addition, we included a small group of patients with definite platelet disorders (Glanzmann thrombasthenia, δ-storage pool deficiency, and immune glycoprotein VI–related disease with granule secretion defect). ResultsThe range, kinetics, and distribution of fluorescence intensity were established for each agonist-target protein combination. Principal component analysis indicates a correlation in response to a target phosphoprotein (AKT and P38MAPK) to different agonists but no correlation in the response of different target phosphoproteins to the same agonist. The heterogeneity of individual responses in the whole population displayed was analyzed using clustering algorithm. Patients with platelet storage pool deficiency were positioned as lowest responders on the heatmap. ConclusionIn complement of functional tests, this study introduces a new approach for rapid platelet signaling profiling in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.