Abstract

Development of simple chiral materials with tunable circularly polarized photoluminescence (CPPL) and circularly polarized electroluminescence (CPEL) for efficient circularly polarized organic light-emitting diodes (CP-OLEDs) is the key toward future 3D displays. In this study, four pairs of chiral 1,2-diaminocyclohexane-based fluorescence enantiomers were efficiently prepared with high yields (up to 92%) and enantiomeric excesses (ee >99%). By the introduction of N-methyl, carbazole, and diphenylamine-donating groups, these materials showed multicolor CPPL and CPEL from blue (420 nm) to red (610 nm) with good thermal and conformational stability. The multilayer CP-OLEDs based on these enantiomers show high external quantum efficiency of up to 5.5% with low-efficiency roll-off and microimage circularly polarized electroluminescence with a dissymmetry factor (gEL) of up to -1.4 × 10-3/+1.3 × 10-3. These results push forward the development of future multicolor circularly polarized electroluminescent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.