Abstract

BackgroundArray comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics. However, abnormalities detected by karyotype analysis cannot always be characterised by scrutinising the G-banded pattern alone, and imbalance detected by array CGH cannot always be visualised in the context of metaphase chromosomes. In some cases further techniques are needed for detailed characterisation of chromosomal abnormalities. We investigated seven cases involving structural chromosome rearrangements detected by karyotype analysis, and one case where imbalance was primarily detected by array CGH. Multicolor banding (MCB) was used in all cases and proved invaluable in understanding the detailed structure of the abnormalities.FindingsKaryotype analysis detected structural chromosome rearrangements in 7 cases and MCB was used to help refine the karyotype for each case. Array CGH detected imbalance in an eighth case, where previously, G-banded chromosome analysis had reported a normal karyotype. Karyotype analysis of a second tissue type revealed this abnormality in mosaic form; however, MCB was needed in order to characterise this rearrangement. MCB provided information for the delineation of small deletions, duplications, insertions and inversions and helped to assign breakpoints which were difficult to identify from G-banded preparations due to ambiguous banding patterns.ConclusionDespite the recent advance of array CGH in molecular cytogenetics we conclude that fluorescence in situ hybridization, including MCB, is still required for the elucidation of structural chromosome rearrangements, and remains an essential adjunct in modern diagnostic laboratories.

Highlights

  • Array comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics

  • Multicolor banding (MCB) is a highly reliable and reproducible fluorescence in situ hybridization (FISH) technique that can be used for the detection of balanced and unbalanced chromosome rearrangements and to help characterize complex chromosome rearrangements and marker chromosomes [1,2] that cannot be characterized by array comparative genomic hybridization (CGH) or by G-banded chromosome analysis and standard FISH techniques alone

  • We describe 8 cases where MCB has been used as an adjunct to karyotype analysis, routine FISH analysis and array CGH in order to characterise structural chromosome aberrations

Read more

Summary

Introduction

Array comparative genomic hybridization (CGH) for high resolution detection of chromosome imbalance, and karyotype analysis using G-banded chromosomes for detection of chromosome rearrangements, provide a powerful diagnostic armoury for clinical cytogenetics. Abnormalities detected by karyotype analysis cannot always be characterised by scrutinising the G-banded pattern alone, and imbalance detected by array CGH cannot always be visualised in the context of metaphase chromosomes. Multicolor banding (MCB) is a highly reliable and reproducible fluorescence in situ hybridization (FISH) technique that can be used for the detection of balanced and unbalanced chromosome rearrangements and to help characterize complex chromosome rearrangements and marker chromosomes [1,2] that cannot be characterized by array comparative genomic hybridization (CGH) or by G-banded chromosome analysis and standard FISH techniques alone. We describe 8 cases where MCB has been used as an adjunct to karyotype analysis, routine FISH analysis and array CGH in order to characterise structural chromosome aberrations Full characterisation of chromosome abnormalities is important in order to establish genotype-phenotype correlation, provide prognoses, and estimate reproductive risks for the proband and the family.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.