Abstract
Prostate cancer is one of the most common cancers in men, with symptoms that may be confused with those caused by benign prostatic hyperplasia. One of the key aspects of treating prostate cancer is its early detection, increasing life expectancy and improving the quality of life of those patients. However, the tests performed are often invasive, resulting in a biopsy. A non-invasive alternative is the magnetic resonance imaging (MRI)-based PI-RADS v2 classification. The aim of this work was to find objective biomarkers that allow the PI-RADS classification of prostate lesions using a radiomics approach on Multiparametric MRI. A total of 90 subjects were analyzed. From each segmented lesion, 609 different texture features were extracted using five different statistical methods. Two feature selection methods and eight multiclass predictive models were evaluated. This was a multiclass study in which the best AUC result was 0.7442 ± 0.0880, achieved with the Naïve Bayes model using a subset of 120 features. Valuable results were also obtained using the Random Forests model, obtaining an AUC of 0.7394 ± 0.0965 with a lower number of features (52). Clinical Relevance- The current study establishes a methodology for classifying prostate cancer and supporting clinical decision-making in a fast and efficient manner and avoiding additional invasive procedures using MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.