Abstract
Let φ be a continuous function in L2(ℝ) such that the sequence {φ(t - n)}n∈ℤ is a frame sequence in L2(ℝ) and assume that the shift-invariant space V(φ) generated by φ has a multi-banded spectrum σ(V). The main aim in this paper is to derive a multi-channel sampling theory for the shift-invariant space V(φ). By using a type of Fourier duality between the spaces V(φ) and L2[0, 2π] we find necessary and sufficient conditions allowing us to obtain stable multi-channel sampling expansions in V(φ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.