Abstract

Hyperspectral Image (HSI) visualization, which aims at displaying as much material information of original images as possible on a trichromatic monitor with natural color, plays an important role in image interpretation and analysis. However, most of the HSI visualization methods only focus on presenting the detail information of a scene without providing natural colors and distinguishing land covers with similar colors. In order to address this problem, this article proposes a multichannel pulse-coupled neural network (MPCNN)-based HSI visualization method, which consists of the following steps. First, the MPCNN is proposed and explored to fuse the original HSI so as to obtain a fused band with rich spatial details. Then, a color mapping scheme is proposed to determine the weights of red, green, and blue (RGB) channels. Finally, the weighted RGB channels are stacked together for visualization. Experiments performed on four hyperspectral data sets demonstrate that the proposed method not only displays the HSI with nature colors but also improves the details in the image. The effectiveness of the proposed method is demonstrated in terms of both visual effect and objective indexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.