Abstract

IntroductionThe detection of a ROS1 rearrangement in advanced and metastatic lung adenocarcinoma (LUAD) led to a targeted treatment with tyrosine kinase inhibitors with favorable progression-free survival and overall survival of the patients. Thus, it is mandatory to screen for the ROS1 rearrangement in all these patients. ROS1 rearrangements can be detected using break-apart fluorescence in situ hybridization (FISH), which is the gold standard; however, ROS1 immunohistochemistry (IHC) can be used as a screening test because it is widely available, easy and rapid to perform, and cost-effective. MethodsWe evaluated the diagnostic accuracy and interpathologist agreement of two anti-ROS1 IHC clones, SP384 (Ventana, Tucson, Arizona) and D4D6 (Cell Signaling, Danvers, Massachusetts), in a training cohort of 51 positive ROS1 FISH LUAD cases, and then in a large validation cohort of 714 consecutive cases of LUAD from six routine molecular pathology platforms. ResultsIn the two cohorts, the SP384 and D4D6 clones show variable sensitivity and specificity rates on the basis of two cutoff points greater than or equal to 1+ (all % tumor cells) and greater than or equal to 2+ (>30% stained tumor cells). In the validation cohort, the D4D6 yielded the best accuracy for the presence of a ROS1 rearrangement by FISH. Interpathologist agreement was moderate to good (interclass correlation 0.722–0.874) for the D4D6 clone and good to excellent (interclass correlation: 0.830–0.956) for the SP384 clone. ConclusionsROS1 IHC is an effective screening tool for the presence of ROS1 rearrangements. However, users must be acutely aware of the variable diagnostic performance of different anti-ROS1 antibodies before implementation into routine clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.