Abstract

Control of monomer sequence enables predictable structure-property relationships in versatile polymeric materials. The facile synthesis of multiblock copolymers (MBCPs) with controlled chain structure is highly challenging, particularly for those prepared via one-pot copolymerization of mixed monomers. Herein, poly-ε-caprolactone MBCPs, a series of thermoplastic elastomers with tailored thermal, mechanical, rheological, and degradable properties, are synthesized by Janus polymerization. Melting temperature, tensile strength, ductility, viscosity, and enzymatic degradability are governed by block length which is in turn dictated by the monomer-to-catalyst feed ratio. The relationships between the physicochemical properties and the architectures are investigated in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.